
Digital Object Identifier (DOI) 10.1140/epjc/s2003-01156-x
Eur. Phys. J. C 28, 237–241 (2003) THE EUROPEAN

PHYSICAL JOURNAL C

Non-leptonic B decays into a charmed tensor meson
J.-P. Leea

Department of Physics and IPAP, Yonsei University, Seoul, 120-749, Republic of Korea

Received: 18 July 2002 / Revised version: 21 October 2002 /
Published online: 14 March 2003 – c© Springer-Verlag / Società Italiana di Fisica 2003

Abstract. In the framework of factorization and the heavy quark effective theory, B → D∗
2π modes are

analyzed. We adopt the result from the QCD sum rule calculation for the hadronic matrix elements at
leading order of ΛQCD/mQ and αs. The QCD sum rule results are well compatible with the current data,
with the prediction for the branching ratios B(B̄0 → D∗+

2 π−) = 8.94 × 10−4 and B(B− → D∗0
2 π−) =

9.53 × 10−4 for Neff
C = 2. We give constraints on the interception τ(1) and the slope parameter ρ2 of the

leading Isgur–Wise function from the experimental bounds. It is argued that the observation of non-zero
B(B̄0 → D∗0

2 π0) directly measures the non-factorizable effects.

1 Introduction

The advent of the B-factory era in KEK and SLAC opens
new possibilities for the study of very suppressed B de-
cays. Non-leptonic two-body decays into tensor (T )
mesons, which are among them, deserve much attention
nowadays. Experimental data on them provides only up-
per bounds for the branching ratios. Two-body hadronic
B decays involving a tensor meson T in the final state has
long been studied [1–3] using the non-relativistic quark
model of Isgur, Scora, Grinstein, and Wise (ISGW) [4]
with the factorization ansatz. Their predictions for the
branching ratios are rather small, while the preliminary re-
sults from the Belle Collaboration indicate that the
branching ratios for B → PT (P = pseudoscalar) may
not be very small compared to the B → PP modes [5].
Recently, both charmed and charmless B → P (V )T (V =
vector) decays were updated [6] using the ISGW2 model
[7], which is an HQET-based improvement of the origi-
nal model. They are in many respects complementary to
B → P (V ) decays. From a theoretical point of view, a
more reliable description of the B → T transition is re-
quired.

The biggest obstacle in theoretical predictions is the
hadronic matrix elements. The factorization hypothesis is
a widely accepted assumption. Recently, it was pointed
out that the factorization parameter a2 is process de-
pendent and that there is a non-zero strong phase dif-
ference between color-allowed and color-suppressed decay
modes, based on the first observation of B̄0 → D(∗)0π0

by Belle and CLEO [8,9]. It is thus very interesting to see
what happens in B → D∗

2π. The charmed tensor D∗
2 is

a member of a doublet (1+, 2+) with jP
l = 3+/2, while

(D′
0, D

′
1) corresponds to (0+, 1+) with jP

l = 1+/2. The
neutral decay mode B̄0 → D∗0

2 π0 is dominated by the
a e-mail: jplee@phya.yonsei.ac.kr

color-suppressed internal W -emission diagram. Within the
factorization approach (we will not consider the small con-
tributions from the W -exchange diagram for simplicity),
the decay amplitude is proportional to 〈0|V − A|T 〉. It
can easily be shown, however, that such a factorized term
vanishes [3]. This is a great advantage of tensor mesons
in the final state because the decay amplitude is greatly
simplified. Given the factorization assumption, therefore,
the hadronic uncertainties are condensed to the B → T
transition matrix elements. On the other hand, the ob-
servation of a sizable branching ratio for B̄0 → D∗0

2 π0

would provide direct information on the non-factorizable
effects. This is another benefit of studying the production
of tensor mesons.

Present bounds from the experiments are [10]

B(B+ → D̄∗0
2 π+) < 1.3 × 10−3 ,

B(B+ → D̄∗−
2 π+) < 2.2 × 10−3 . (1)

In this paper, we analyze the two-body B decays into a
charmed tensor D∗

2 . Heavy quark effective theory (HQET)
is an appropriate framework in this process. In HQET,
the B → D∗

2 transition matrix element is parameterized
by one universal Isgur–Wise (IW) function at leading or-
der of ΛQCD/mQ, where mQ is the heavy quark mass. An
extensive study of the leading and subleading IW function
in semileptonic decays is found in [11]. In general, the IW
function depends on the velocity transfer y ≡ v · v′ where
v(v′) is the four-velocity of B(D). Typically, the kinemat-
ically allowed range of y − 1 is very small in the B → D
transition. It is customary to parameterize the IW func-
tion τ(y) in terms of its interception τ(1) and the slope
parameter ρ2, and expand in (y−1). The branching ratio is
directly proportional to |τ(1)|2. Unlike the groundstate to
groundstate transition, the heavy quark symmetry (HQS)
does not guarantee the normalization of τ(1) in B → D∗

2 .
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This is because at zero recoil ground- to excited-state tran-
sition is suppressed by O(ΛQCD/mQ), due to the HQS.

Though the HQET is very economic and allows us to
make a systematic expansion of ΛQCD/mQ, one still needs
some non-perturbative methods to evaluate the IW func-
tion. In the present work, we adopt the QCD sum rule
results for the B → D∗

2 leading IW function [12]. The QCD
sum rule is among the most reliable non-perturbative
methods [13]. It takes into account the non-trivial QCD
vacuum which is parameterized by various vacuum con-
densates in order to describe the non-perturbative nature.
In the QCD sum rule approach, hadronic observables can
be calculated by evaluating two- or three-point correla-
tion functions. The hadronic currents for constructing the
correlation functions are expressed by the interpolating
fields. In describing the excited D mesons of the (1+, 2+)
states, the transverse covariant derivative is included in
the interpolating fields [12].

In the next section, the decay amplitudes are given
within the factorization, and the QCD sum rule results
for the leading IW function are summarized. Section 3 con-
tains the numerical results and discussions. The QCD sum
rule results are compared with the ISGW2 model predic-
tions. Possible next-to-leading order corrections are also
discussed. We give a summary in Sect. 4.

2 Hadronic matrix elements
and QCD sum rules

The effective weak Hamiltonian for B → D∗
2π is

Heff =
GF√

2
VcbV

∗
ud

[
c1(µ)(d̄u)(c̄b)

+c2(µ)(c̄u)(d̄b) + · · ·
]

, (2)

where (q̄1q2) = q̄1γ
µ(1 − γ5)q2, and ci(µ) are the Wilson

coefficients.
Within the factorization framework, the decay rate

amplitudes are given by

A+− ≡ A(B̄0 → D∗+
2 π−) = T + E , (3a)

A00 ≡ A(B̄0 → D∗0
2 π0) =

1√
2
(−C + E) , (3b)

A0− ≡ A(B− → D∗0
2 π−) = T + C , (3c)

where

T =
GF√

2
VcbV

∗
ud〈π−|(d̄u)V −A|0〉

×〈D∗+
2 |(c̄b)V −A|B̄0〉a1 , (4a)

C =
GF√

2
VcbV

∗
ud〈D∗0

2 |(c̄u)V −A|0〉

×〈π0|(d̄b)V −A|B̄0〉a2 , (4b)

E =
GF√

2
VcbV

∗
ud〈B̄0|(d̄b)V −A|0〉

×〈D∗0
2 π0|(c̄u)V −A|0〉a2 , (4c)

are the color-allowed external W -emission, color-sup-
pressed internal W -emission and W -exchange amplitudes,
respectively. Note that (3) satisfies the isospin triangle re-
lation

A+− =
√

2A00 + A0− . (5)

The factorized matrix elements are parameterized as

〈0|Aµ|P 〉 = ifP pµ
P , (6a)

〈T |jµ|B〉 = ih(m2
P )εµνρσε∗

ναpα
B(pB + pT )ρ(pB − pT )σ

+k(m2
P )ε∗µν(pB)ν

+ε∗
αβpα

Bpβ
B [b+(m2

P )(pB + pT )µ

+b−(m2
P )(pB − pT )µ] , (6b)

where jµ = V µ − Aµ and V µ (Aµ) denote a vector (an
axial-vector) current. Here fP denotes the decay constant
of the relevant pseudoscalar meson, and h(m2

P ), k(m2
P ),

b+(m2
P ), b−(m2

P ) express the form factors for the B → T
transition.

We will neglect the internal W -exchange diagram E for
simplicity. And the color-suppressed internal W -emission
diagram C is forbidden, because [3]

C ∼ 〈0|jµ|T 〉 ∼ pνεµν(p) + pµεν
ν(p) = 0 . (7)

Thus, the decay mode B̄0 → D∗0
2 π0 is not allowed in the

factorization scheme.
In the heavy quark limit where mQ → ∞, all the form

factors are expressed by one universal Isgur–Wise (IW)
function τ(y ≡ v · v′) [12]:

h(y) =
τ(y)

2mB
√

mBmT
, (8a)

k(y) =
√

mT

mB
(1 + y)τ(y) , (8b)

b+(y) = − τ(y)
2mB

√
mBmT

, (8c)

b−(y) =
τ(y)

2mB
√

mBmT
, (8d)

where v (v′) denotes the four-velocity of B (T ).
At this point, non-perturbative methods are needed to

evaluate τ(y). We use the QCD sum rule results at leading
order of ΛQCD/mQ. The QCD sum rule result for τ(y) is
[12]

τ(y)f−,1/2f+,3/2 e−(Λ̄−,1/2+Λ̄+,3/2)/M

=
1

2π2(y + 1)3

∫ ωc

0
dω+ω3

+e−ω+/M

− 1
12

m2
0
〈q̄q〉
M

− 1
3 × 25π

〈αsGG〉 y + 5
(y + 1)2

, (9)

where
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Table 1. Branching ratios for B → D∗
2π with QCD sum rule

(ISGW2 [6]). The QCD sum rule results are from the linear
approximation of (11)

ξ = 0.1 ξ = 0.3 ξ = 0.5

B+− × 104 11.42 (3.11) 10.14 (2.76) 8.94 (2.44)
B0− × 104 12.17 (3.31) 10.81 (2.94) 9.53 (2.59)

f2
−,1/2 e−2Λ̄−,1/2/M

=
3

16π2

∫ ωc0

0
ω2e−ω/Mdω − 1

2
〈q̄q〉

(
1 − m2

0

4M2

)
, (10a)

f2
+,3/2 e−2Λ̄+,3/2/M (10b)

=
1

26π2

∫ ωc2

0
ω4e−ω/Mdω − 1

12
m2

0〈q̄q〉 − 1
25π

〈αsGG〉M ,

from which f±,3/2(1/2) and Λ̄±,3/2(1/2) are determined.
Here 〈q̄q〉 and 〈αsGG〉 are vacuum condensates, m2

0 =
0.8 GeV2, and M is the Borel parameter. The contin-
uum thresholds ωc, ωc0, and ωc2 are adjustable parameters
for the numerical analysis. Typically, the kinematically al-
lowed range of y is very narrow, 1 ≤ y � 1.3. It is therefore
convenient to approximate τ(y) linearly as

τ(y) = τ(1)[1 − ρ2(y − 1)] . (11)

The QCD sum rule predicts from (9) and (10)

τ(1) = 0.74 ± 0.15 , ρ2 = 0.90 ± 0.05 . (12)

The errors come from the QCD sum rule parameters, the
continuum threshold and the Borel parameter.

3 Results and discussions

The decay rate for B → PT is in general given by

Γ (B → PT ) =
|
pP |5

12πm2
T

(
mB

mT

)2
∣∣∣∣∣
A(B → PT )

ε∗
µνpµ

Bpν
B

∣∣∣∣∣
2

, (13)

where 
pP is the pseudoscalar three momentum. The
branching ratios for B → D∗

2π are summarized in Table 1
with the abbreviations

B+− ≡ B(B̄0 → D∗+
2 π−) , (14a)

B0− ≡ B(B− → D∗0
2 π−) . (14b)

In Table 1, we give the numerical results for various ξ ≡
1/N eff

C , where N eff
C is the effective number of color, while it

is reported that N eff
C (B → Dπ) ≈ 2 [14]. For comparison,

results from the ISGW2 model [6] are also given. The QCD
sum rule predicts about four-times larger branching ratios.

Figure 1 shows the transition form factors as functions
of y for both the QCD sum rule and the ISGW2, where
the form factors FB→T are defined by
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*
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ISGW2

Fig. 1. Form factors F B→D∗
2 (y) from QCD sum rule and

ISGW2

T = i
GF√

2
VcbV

∗
udfP ε∗

µνpµ
Bpν

B

×FB→T (m2
P )a1 , (15a)

FB→T (m2
P ) = k(m2

P ) + (m2
B − m2

T )b+(m2
P )

+m2
P b−(m2

P ) . (15b)

With the linear approximation of (11) and (12), the
ratio of the hadronic and semileptonic branching ratios is

B(B → D∗
2π)

B(B → D∗
2�ν̄)

= 0.20 . (16)

In this fraction, the common factor of |τ(1)|2 is cancelled
and only the slope parameter ρ2 remains at leading order.
Near future experiments will check this ratio. One inter-
esting thing is that the value is very close to that of the
B → D1 transition [15]:

B(B− → D0
1π

−)
B(B− → D0

1�
−ν̄)

= 0.21 ± 0.08. (17)

On the other hand, conversely, the experimental
bounds on the branching ratios can constrain τ(1) and
ρ2. Figure 2 shows the allowed region (shaded) of these
two parameters from the given branching ratios. Note that
the central value of the QCD sum rule result (τ(1), ρ2) =
(0.74, 0.90) resides very close to the boundary. In addi-
tion, the measured value of the ratio (16) will determine
ρ2 regardless of τ(1). More precise measurements will thus
provide a simple test of the leading order description of
B → D∗

2 .
Now consider the next-to-leading order (NLO) correc-

tions to the above analysis. The NLO contributions come
from both ΛQCD/mQ and αs. In HQET, ΛQCD/mQ correc-
tions appear in a two-fold way. At the Lagrangian level,
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Fig. 2a,b. Allowed regions (shaded) of (τ(1), ρ2) from the experimental bounds for a B− → D∗0
2 π− and b B̄0 → D∗+

2 π−

subleading terms are summarized in λ1 and λ2. It is a
usual convention that λ1 parameterizes the kinetic term
of the higher order derivative, while λ2 represents the
chromomagnetic interaction which explicitly breaks the
heavy quark spin symmetry. Their effects are known to
be small [11]. At the current level, ΛQCD/mQ corrections
come from the current matching procedure onto the effec-
tive theory. The correction terms originate from the small
portion of the heavy quark fields which corresponds to
the virtual motion of the heavy quark. During the cur-
rent matching, eight subleading IW functions are newly
introduced and two of them are independent.

Compared with the B → D1 transition, ΛQCD/mQ

corrections to B → D∗
2 would be rather small. This is due

to the tensor structure in the final state. At zero recoil
(properties at this point are very important because the
kinematically allowed region is quite narrow around it),
the transition matrix is proportional to

〈D∗
2(v, ε)|jµ|B(v)〉 ∼ εµνvν = 0 . (18)

As argued briefly in Sect. 1, the vanishing matrix element
is well explained by the HQS at the heavy quark limit. On
the other hand, for the B → D1 transition at zero recoil,

〈D1(v, ε)|jµ|B(v)〉 ∼ ε∗µ , (19)

which can be non-zero in general. That is the reason why
NLO corrections are more important in B → D1.

Another NLO contribution from O(αs) corrections is
studied in B → D′

0, D
′
1 decays in [16]; it remains as a good

challenge in the B → D∗
2 process.

Finally, if there were observed a sizable value of B00 ≡
B(B̄0 → D∗0

2 π0), it should come from non-factorizable
effects. Or indirectly, the measurement of (κB+− − B0−)

where κ ≡ τB+/τB̄0 ≈ 1.07 is the B life-time ratio would
test the validity of the isospin relation (5) and the general
factorization scheme. The values in Table 1, of course,
satisfy the relation B0−/B+− = κ.

4 Summary

Using the QCD sum rule results for the leading IW func-
tion of B → D∗

2 , we investigated the non-leptonic two-
body decays B → D∗

2π within the framework of factoriza-
tion. The predicted branching ratios are about four times
larger than the recent calculations based on the ISGW2.
The study of the tensor meson is very advantageous be-
cause the decay amplitudes are simple, and some of the
decay modes are directly related to the non-factorizable
effects. Present B factories lead to a big optimism of pro-
ducing copious tensor mesons, and more precise and re-
liable theoretical works are requested. The NLO analysis
of both O(ΛQCD/mQ) and O(αs), in this respect, is chal-
lenging and will improve the theoretical reliability.
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